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ABSTRACT 

Two original characteristics distinguish the herein presented work: the strategy adopted for the finite element modeling, and 

the use of a newly introduced constitutive law for concrete. The aim is to be able to treat in a simplified way various 

structures based on column beams and bearing walls subjected to earthquakes by privileging the nonlinear 1D behavior. 

Applications are presented to demonstrate the pertinence of the modeling strategy used. 
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INTRODUCTION 

When dealing with reinforced concrete (RC) structures specific attention is paid to assess (new buildings) or reassess 

(existing buildings) their safety level. This requires the use of high performance numerical tools that are simple enough to 

use, to simulate the non-linear behavior of real structures subjected to severe actions such as earthquake. This paper aims to 

meet this need for concrete structures by combining the use of an original material constitutive model and a simplified 

description of the structure. 

Damage remains a major component of concrete behavior. Based on previous work [1], [2], the damage model [3] offers 

the simplest and most complete set-up possible. It implies formulating the following set of main assumptions: 

- Concrete behavior is considered as the combination of elasticity and damage. The damage description is assumed to 

be isotropic and directly affects the stiffness evolution of the material. In the general 3D case, let  be the stiffness 

matrix of the original material, then, the tensor stress - strain relationship is governed by: 

   𝝈 = (1 − 𝑑): 𝟄       (1) 

- d, called the effective damage variable, characterizes the effect of damage on the stiffness activated by loading. Two 

principal damage modes are considered, cracking and crushing, and subsequently associated with two 

thermodynamic variables Yt and Yc, which characterize the extreme strain state reached during the lading path, 

respectively in the tensile part and compressive part of the strain space. 

The relevance of this model has been shown in the context of classical finite element (FE) description 2D-3D, for either 

monotonous or cyclic loads [3].   
In order to reduce the size of non-linear problems for real structures, a simplified FE description was considered for engi-

neering purposes [4]. It is based on the use of multi-fiber beam elements for both, beams and columns. For structural walls, 

whose 2D-3D modeling is not always easy, it is proposed here to describe them by an in plane lattice model while recreating 

their bending and torsion inertia to handle out–of-plane loadings.  

In such a context, it is a non-linear 1D behavior that is used for both concrete and reinforcement bars. Then it is easy to 

introduce, at low cost, enhancements to limit the dependence on mesh size during damage evolution as well as to take spe-

cific phenomena into account, such as steel-concrete debonding, hysteretic loops and permanent strains due to friction 

between crack lips and initial stresses. 

CONSTITUTIVE LAWS AND NUMERICAL MODELS 

Concrete model 

The  damage model is a new concrete model set up around the use of a multi-surface threshold to activate the different 

damage effects linked to cyclic loading, including unilateral effects (crack closure due to the reverse of the load). 
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Assumptions are formulated to simplify the writing, while allowing a correct description of the main non-linear effects and 

the 1D formulation is used in the present work.  

Constitutive equations 

A summary of the  damage model is proposed below. For a more detailed presentation, see Mazars et al. [3], [4]. Like for a 

previous model, let us consider the equivalent strain concept [1].  Below, we define t and c as the equivalent strain for 

cracking and crushing, respectively ( is the Poisson ratio): 
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Two independent loading surfaces are associated: Yf ttt
    and  Yf ccc

      (4) 

such that during gradual Yt(c) evolution, the identity ft(c)= 0 holds, else ft(c) < 0.   

Yt and Yc define the equivalent strain maximum values reached on the loading path: 

]max,[SupY ttt  0    and   ]max,[SupY ccc  0        (5) 

0t and 0c are the initial thresholds of t and c respectively. 

The effective damage d is directly correlated to the thermodynamic variables Yt and Yc through the driving variable Y, i.e.: 

Y)r(YrY ct  1 ,  with  𝑟 = ∑ < 𝜎̃𝑖 >+ ∑  |𝜎̃𝑖|⁄       (6) 

r is the triaxiality factor [5], which evolves within the stress space from 0, for the compressive stress zone, to 1 for the tensile 

stress zone;  𝝈̃ = 𝝈 (1 − 𝑑)⁄ = : 𝟄  is the "effective stress";  < 𝑥 >+ and I x I denote the positive part and absolute value 

of x, respectively. Therefore, r is damage-independent and can be determined at each calculation step without iteration, which 

makes this model explicit.  

As was the case with the Mazars model [1], the damage evolution law is defined by: 
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Y0 is the initial threshold for Y. Variables A and B determine the shape of the effective damage evolution laws and subsequent 

constitutive laws. [A, B] evolves from [At, Bt] for the "cracking" curves to [Ac, Bc] for the "crushing" curves. At, Bt, Ac, Bc are 

all material parameters directly identified from uniaxial experiments (tensile or flexural tests and compression tests). 

1D version of the model 

It was observed in the previous section, that the driven variable for d  is Y. From equation (6) and for a uniaxial situation, it is 

derived that: Y=Yt for tension (r = 1), and Y=Yc for compression (r = 0). 

From Equations (1) and (7), two expressions are found to describe uniaxial behavior: 
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where Yt =Sup0tmaxt with Y0t0t0tE and where Yc =Sup0cmax c) with Y0c0c0c /E . 

Figure 2 shows the corresponding uniaxial response with a specific loading path, from OABE in tension to OCDF in 

compression, while highlighting the range of evolution in stiffness due to crack opening and closure (i.e. the unilateral effect). 

Modeling strategies 

Multi-fiber beam elements 

To decrease the number of degrees of freedom, 3D Timoshenko multi-fiber beam elements have been used [6]. This beam 

description generates kinematic constraints to ensure respecting both, the continuity of displacement between two elements 
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and all plane sections. However, this leads to generate only the need of 1D constitutive laws. In this context, nonlinear fibers 

are associated with the 1D  damage model for concrete and with an elasto-plastic model for rebar.  

 

Figure 1(on the left) - Tension-compression loading path exhibiting the unilateral effect. 

Figure 2 (on the right) - Localization processes in a multi-fiber beam description; a) plain concrete: damage is localized in a 

band of elements (size h); and b) reinforced concrete: damage is distributed along the cracking zone (sc is the crack spacing) 

Concrete exhibits softening, which in turn leads to strain localization and results can be dependent on element size. Strain 

localization is a major concern in maintaining the objectivity of finite element calculations. Hillerborg stipulated that the 

energy dissipated at failure in a unit concrete volume must be equal to the fracture energy Gf [7]. In classical 2D-3D 

calculations (FE), localization takes place within a band of elements, and the material parameters must be calibrated with the 

size h of these elements (Fig. 2a). In a recent paper [4], it was demonstrated that for reinforced concrete members discretize 

using Timoshenko multi-fiber beams elements (MF), except  in pure tension and for a low amount of rebar, no localization is 

present. Concrete damage spreads and diffuses in the highest tension area (Fig. 2b).  

As shown Fig. 2b, in the absence of localization, the damage-cracking processes for one crack are distributed on both sides of 

the crack over a volume defined by the distance sc between two cracks. Therefore, the concept of crack band cannot be 

applied and the calculation must be calibrated so that the fracture energy is consumed in a sc wide area, leading us to write: 

𝐺𝑓 = 𝑠𝑐 ∫ 𝜎𝑑𝜀           with:         𝑠𝑐 ∫ 𝜎𝑑𝜀
 

𝑀𝐹
= ℎ ∫ 𝜎𝑑𝜀

 

𝐹𝐸
    

Lattice model for structural walls: Equivalent Reinforced Concrete (ERC) 

Figure 3 shows the principle of the equivalent reinforced concrete method (ERC). We start from a representative volume of 

the wall at the intersection of the 2 reinforcement networks (vertical and horizontal), it includes an elementary volume of 

concrete, represented by a rectangular assembly of 6 bars and the related rebar represented by a rectangle of 4 bars coupled to 

the previous one at the level of the nodes (see [8] for more details). The bars being articulated have a uniaxial behavior. 

Those relating to concrete will have an elasto-damageable behavior and those relating to steel will have an elasto-plastic 

behavior, the same as those used in finite element calculations, except that, being uniaxial, it is easier to enrich them to take 

into account the particularities of the problem treated (hysteresis and permanent strains of the concrete behavior for example). 

 

Figure 3- Equivalent Reinforced Concrete modeling [8]. 
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On the basis of energy equivalence between the homogeneous body and the network of bars substituted for it, Hrennikoff [9] 

determined the cross-section of the concrete lattice for an elastic problem. The real section is taken for the rebar lattice. Note 

that this type of discretization imposes an overall Poisson coefficient equal to 1/3. 

Constitutive model enhancement 

In the present modeling strategy (multi-fiber beam and ERC wall), the behavior of each fiber is uniaxial. Then it is possible to 

improve them easily to take into account various phenomena. In this framework and to improve concrete and steel cyclic 

behavior, an enhanced 1D version of both models can be proposed. 

 

Figure 4 – Enhanced constitutive 1D models: a) concrete curve including hysteretic loops and permanent strain; b) rebar-

concrete bond curve obtained by introducing a sliding stage into the global steel fiber behavior.  

To improve replication of the concrete cyclic behavior, we have upgraded the 1D version of the  damage model presented 

before, by introducing a hysteretic loop as well as the permanent strain generated from friction between the crack lips and the 

release of initial stresses (Fig. 4a). 

Related to rebar behavior, it is widely acknowledged that debonding between concrete and rebar occurs at large deformations. 

This phenomenon is especially sensitive whenever cracks open and steel yields. In a fiber beam description, given that no 

interaction is taking place between the fibers except at their ends and that the damage-fracture processes are distributed, 

debonding cannot be reproduced. This point leads to overestimating the plastic strain [4]. One way to introduce bond 

degradation and the relative sliding of rebar over concrete in a multi-fiber beam description is to split the total strain in the 

steel fiber into two parts: a first part associated with the proper strain of the steel (e + p), and the second part related to the 

sliding strain (s) occurring at the steel-concrete interface (see Fig. 4b). And, due to the crack closure, s gradually vanishes 

and reaches 0 when the strain sign changes. 

APPLICATIONS 

The simulations presented in this paper have been made on the platform ATL4S developed at INSA Lyon [10] for internal 

numerical developments and initially inspired by the philosophy of data entry of FEDEASLAB [11]. 

Shear wall SAFE 

The “SAFE” test program has been performed on the reaction wall at JRC Ispra (Italy) and was sponsored by EDF. 

Schematically the wall to be modeled is given figure 5 [12].  The choice is to consider only the wall subdomain in a non-

linear lattice model (ERC model), integrating the current reinforcements (HA8 vertical and HA10 horizontal with a spacing 

of 12.5cm). Both, left and right orthogonal reinforcing walls, are represented by a multi-fiber beam (0.16x0.8m) elasto-

damageable, including the actual vertical reinforcements (20 HA12). Elastic and highly rigid beams (section area # 1m
2
) are 

used at the top and the bottom of the walls to apply correctly the boundary conditions. 

These tests were conducted on a reaction wall by a "pseudo dynamic" procedure. The dynamic equilibrium of the structure 

involves masses and acceleration increments and the measured resisting force provides the displacement increments to be 

applied to the wall at each time step. Since the data provide the evolution in time of the applied displacement, we decided to 
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simulate the loading by directly imposing the proposed displacement steps on the structure. As time becomes a fictitious 

time, inertia is not involved and the loading becomes a cyclic loading with variable intensity as in the pseudo-dynamic test. 

 

Figure 5- Scheme of the wall to be modeled and the selected discretization. 

 

Figure 6- Overall force-displacement behavior of the SAFE wall in cyclic loading (Run 3 and 4). On the left, experimental 

response, on the right, numerical response. 

Figure 6 shows, for the most intense cycles (run n°3 and 4), the force - displacement comparison between the test results 

(left) and the numerical results (right).  The numerical results are quite relevant to those given by the tests, including for the 

run n° 4 which leads to structural failure. In the context of an organized benchmark on the subject, they appear among the 

best results. 
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SMART shaking table test 

 

Figure 7- SMART mock-up[13]. Drawing related to a storey of the structure (left). General view of the experiment (right).  

This test, sponsored by EDF, was performed on the shaking table at CEA Saclay, France. The mock-up (Fig. 7) is a 

trapezoidal three-storeys structure representative of a real building at scale 1/4, mainly composed of structural walls, with in 

addition, one column and three beams (under each slab). Herein, both, the columns and the beams have been modeled by 

means of Timoshenko multi-fiber beam elements whilst the slabs have been modeled through elastic shell elements. The 

ERC approach [8] has been used for the modeling of the structural walls. Furthermore, in order to be suitable for the 

modeling of the three-dimensional SMART structure, the ERC modeling necessitates to be completed by vertical beam-layer 

with no mass and no stiffness, but giving out-of-plane inertias (see Fig. 8).  

 

 

Figure 8 - Tuning of the out-of-plane stiffness in the enriched-ERC modeling. The enriched-ERC model (a, b, c) have same 

dimensions, mass and mesh-size of the shell model (d, e, f). The moments of inertia (Jxx and Jyy) and the torsion inertia 

moment (JT) of the added vertical beam-layer are tuned in order to reproduce (a, b, c) the first three modal frequencies and 

shapes of the “reference” shell model (d, e, f). Reproduced from [14]. 

 

Finally, the mass of the structure is distributed on the elements (beams, column, slabs and walls) whilst the additional masses 

(located on the upper level) have been explicitly modeled through massive (3D) elements. For the steel reinforcement bars, a 

classical elasto-plastic constitutive relation has been selected. The damage-based constitutive law ( model) chosen to 

represent concrete behavior for both, beams, columns (multi-fiber beam modeled) and shear walls (lattice modeled), can take 

into account the decrease in stiffness due to cracking, as well as the stiffness recovery that occurs at crack closure (Figure 

4b).  

Point C 
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Predicted response 

 

Mode Bending X Bending Y Torsion 

Exp. Frequency 6.4 Hz 9.1 Hz 17.8 Hz 

Num. Frequency 6.3 Hz 7.9 Hz 16.5 Hz 

Figure 9- Vibration modes of the mock-up on the shaking table (for better clarity, the shaking table and the additional masses 

are not visualized): a) bending X-direction; b) bending Y-direction; c) torsion. Reproduced from [14]. 

The mock-up is loaded in a bidirectional way and the loading program included 3 main phases: 1/ artificial earthquake 

respecting the design spectrum (pga = 0.22g); 2/ Northridge natural earthquake (pga = 1.1g) and 3/Northridge replica. 

 

Figure 10- Experimental vs. numerical comparison - RUN 9, design earthquake: a) displacement history at point C, third 

floor, X-direction; b) maximum displacement at each floor, point C, X-direction - RUN 19 (Northridge earthquake): c) 

maximum displacement at each floor,  point C, X- direction, and d) acceleration spectrum at point C, third floor, X-direction. 

The figures 9 and 10 report a comparison of numerical vs. experimental results in terms of modes and displacements. Figure 

9 represents the first three vibration modes of the structure issued of modal analysis; the associated frequency values are 

reported in the table embedded in the figure.  

Design earthquake 

(pga 0.22g) 

Northridge earthquake 

(pga 1.1g) 
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Among the several runs performed, figure 10 presents some displacement results on 2 specific ones: 

- Run n°9 (design level), for which the X experimental and numerical displacement history at point C - 3
rd

 floor and 

the maximum values at this point on each floor, are compared. 

- Run n°19 (Northridge signal), for which experimental and numerical maximum values of the X-displacement at 

point C on each floor, and the acceleration spectrum at point C, 3rd floor, direction X, are compared. 

Overall, these results are good, in any case as good as those shown during the 2013 SMART benchmark with much more 

refined discretization (2D-3D) [13]. 

CONCLUSIONS 

The aim of this work is to be able to treat in a simplified way of various structures subjected to earthquakes based on column 

beams and bearing walls. This is done by focusing on two main aspects: the strategy adopted for the finite element modeling 

and the relevance of constitutive models. 

To model slender element such as beam or column Timoshenko multi-fiber beams are privileged and for bearing walls a 

lattice based model is proposed using the equivalent reinforced concrete model (ERC). The main interest of this type of 

modeling strategies (multi-fiber beams and ERC model) is that, being based on uniaxial behavior, it makes the application to 

non-linear calculation easy and robust. This is not always the case for 2D or 3D damage or smeared crack approaches, 

particularly under shear, where localization phenomena can compromise the convergence and the robustness. 

The non-linear concrete constitutive model used is the 1D version of the  damage model well adapted to describe cyclic and 

dynamic loading. In both descriptions, multi-fiber beams and ERC model for concrete elements and bar elements for rebar, a 

1D classical elasto-plastic model can be used. 

The applications proposed are on a shear wall (SAFE program performed on the ELSA reaction wall at JRC Ispra) and on a 

mock-up representative of a power plant building, tested on the Azalée shaking table at CEA Saclay (EDF SMART 

program). Comparative calculation-experiment results show the relevance of the modeling, which is also reliable and 

inexpensive.  
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